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Abstract: Interest in machine learning and neural networks has increased significantly in recent
years. However, their applications are limited in safety-critical domains due to the lack of formal
guarantees on their reliability and behavior. This paper shows recent advances in satisfiability modulo
theory solvers used in the context of the verification of neural networks with piece-wise linear and
transcendental activation functions. An experimental analysis is conducted using neural networks
trained on a real-world predictive maintenance dataset. This study contributes to the research on
enhancing the safety and reliability of neural networks through formal verification, enabling their
deployment in safety-critical domains.
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1. Introduction

In the last decade, interest in machine learning (ML) and neural networks (NNs) has
grown significantly in both research and industry. Neural networks have shown exceptional
capabilities for various tasks in different areas of computer science [1,2]. However, their
applications are still somewhat limited with regard to safety and security since there are
no formal guarantees regarding their reliability and behavior. Despite the considerable
research effort that have been made to understand why neural networks behave in a certain
way [3–5], their inherent complexity makes it difficult to solve this issue.

Providing formal guarantees on the performance of neural networks [6–20], known
as verification, or making them compliant with such guarantees [21–27], known as repair,
has proven to be similarly challenging, even when using models with limited complexity
and size. Additionally, neural networks have recently been found to be prone to reliability
issues known as adversarial perturbations [28], where seemingly insignificant variations in
their inputs cause unforeseeable and undesirable changes in their behavior.

In this paper, we investigate how satisfiability modulo theory (SMT) technologies
can enable the verification of neural networks that exhibit both piece-wise linear and
transcendental activation functions. The inherent non-linearity of these functions presents
significant scalability challenges, and our goal is to assess the current progress of these
technologies for their application in real-world scenarios. To accomplish this, we evaluate
the relevant technologies in the context of predictive maintenance (see, e.g., [29] for recent
advancements), with a specific focus on AI-based algorithms utilized in the Intelligent
Motion Control under Industry 4.E (IMOCO4.E) project [30].

IMOCO4.E is a Key Digital Technologies Joint Undertaking (KDT JU) project that com-
menced in September 2021. It brings together 46 partners from 13 countries with the goal
of enhancing the intelligence and adaptability of mechatronic systems by pushing them to
their limits. This objective will be achieved by leveraging novel sensory information, model-
based approaches, artificial intelligence (AI), machine learning (ML), and principles of
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industrial IoT. The IMOCO4.E project aims to provide vertically distributed edge-to-cloud
intelligence for machines, robots, and other human-in-the-loop cyber-physical systems that
involve actively controlled moving components. By doing so, it will contribute to shaping
the transition of European manufacturing towards Industry 4.0, enabling the perception
and management of advanced machinery and robotics.

One of the key deliverables of the project is a reference architecture that will be
tested and validated in various use cases and pilots across different industrial domains,
including packaging, industrial robotics, healthcare, and semiconductors. As part of the
project, significant emphasis is placed on researching new methods and techniques for
applying neural networks to predictive maintenance. This research aims to revolutionize
the operation of product life-cycle management systems. Neural networks have shown
promising results in this context as they can analyze data from diverse sources such as
sensors, logs, and other equipment monitoring systems, enabling preemptive maintenance
that reduces downtime and extends equipment lifespan. However, the usage of neural
networks for predictive maintenance, particularly in safety-critical application domains,
may be somewhat limited due to the inherent unexplainability of their behavior. To bridge
this gap, the incorporation of formal verification techniques could prove essential.

In the paper, we performed an experimental evaluation of various state-of-the-art SMT
solvers. We utilized a set of benchmarks consisting of diverse neural network architectures,
non-linear activation functions, and properties to be verified using real sensor data from an
electric motor. Our objective was to assess the solvers’ capabilities in terms of verifying
networks with these activation functions and to achieve realistic accuracy levels.

The results of our evaluation indicate that solvers currently at the cutting edge, which
support transcendent functions, can only verify networks with such activation functions to
a limited extent.

The rest of the paper is structured as follows. In Section 2, we introduce some basic
concepts and definitions we will use in the rest of the paper. In Section 3, we explain our
motivations and we present our encoding for the benchmarks we use in the experimental
evaluation. In Section 4, we introduce our experimental setup, provide all the information
needed to replicate our experiments, and present our results. In Section 5, we report the
related work regarding the formal verification of neural networks and focus on the usage
of SMT solvers for this task. Finally, in Section 6 we conclude the paper with some final
remarks and we outline some of our future research activities.

2. Preliminaries
2.1. Neural Networks

Neural networks are machine-learning models consisting of interconnected computing
units, commonly known as neurons. In principle, these neurons can be connected in many
different configurations; however, in this work, we are mainly interested in sequential
neural networks. These are neural networks arranged in several sequential layers whose
neurons are only connected to the neurons of the immediately previous and following
layers. The first and the last layer of the network are called, respectively, the input and
output layers.

Computationally, the l-th layer of a sequential neural network can be defined as a
function fl : Il → Ol , where Il andOl represent, respectively, the input and output domain
of the function. Similarly, a generic sequential neural network can be defined as a function
ν : I1 → Op, where I1 and Op are, respectively, the input (output) domain of both the first
(last) layer of the network and of the network as a whole. In particular, the neural network
function ν can be expressed as:

ν(x) = fp( fp−1(... f1(x)...)) (1)

In this paper, we focus mainly on layers whose inputs and outputs consist of vectors
of real numbers; therefore, we will usually have Il ⊆ Rn and Ol ⊆ Rm.
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The structure defined by the various layers of a neural network, their connections,
and their hyper-parameters is commonly known as the network architecture. Obviously,
the different kinds of layers that can be used in the architecture of a sequential neural
network are myriad, and new ones are continuously developed with the advancement
of the state-of-the-art. In this work, we focus on the following small subset of layers
and architectures.

2.1.1. Fully Connected Layers

Fully connected layers apply an affine transformation to their input: the corresponding
function can be written as:

f (x) = Wx + b (2)

where x ∈ Rn is the input; W ∈ Rm×n is the weight matrix; b ∈ Rm is the bias vector; and
m is commonly known as the number of hidden neurons of the layer, which controls the
size of its output.

2.1.2. Activation Layers

Activation layers apply a particular, usually non-linear, function to each element of
the input vector. A general activation function can be represented as f (x) = σ(x) with
x ∈ Rn and f (x) ∈ Rn. The neural networks in our experimental evaluation present three
different kinds of activation layers: ReLU, Logistic, and Tanh (as shown in Figure 1), whose
corresponding activation functions are, respectively,

f (x) = max(0, x) (3)

f (x) =
1

1 + e−x (4)

f (x) =
ex − e−x

ex + e−x (5)

Traditionally, the logistic and hyperbolic tangent functions provide the best non-
linearity in terms of representativity. However, their computational complexity as tran-
scendent functions is much higher than the one presented by the ReLU, which is piece-
wise linear: as a consequence, in state-of-the-art network architectures, ReLU layers are
quite common.
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Figure 1. From left to right: the rectified linear unit (ReLU), the logistic, and the hyperbolic tangent
activation functions.

It should also be noted that fully connected layers and activation layers are the two
most basic components of every neural network: indeed, the first neural networks consisted
only of one or more blocks composed of one fully connected layer and one activation layer.
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2.2. Satisfiability Modulo Theory

Satisfiability modulo theories (SMT) is a field of automated reasoning whose aim is
to determine the satisfiability of logical formulas by leveraging a combination of decision
procedures for various theories. In the early 1980s, researchers recognized that numerous
problems in computer science, mathematics, and engineering could be represented as
logical formulas containing constraints that belong to different theories such as arithmetic,
bit-vectors, arrays, and sets. Traditionally, specialized solvers were used for each theory,
but this approach often resulted in inefficient and incomplete solutions. The concept behind
SMT was to combine solvers for different theories into a single solver that could handle
formulas with mixed theories efficiently and effectively.

SMT solvers are currently widely used in various fields, including software verification,
program analysis, optimization, planning, and synthesis. SMT has also played an important
role in the development of advanced tools such as theorem provers, model checkers, and
symbolic execution engines. In the following, we present the basic syntactic and semantic
concepts required to comprehend the rest of the paper.

SMT focuses on the problem of deciding the satisfiability of a first-order formula
with respect to some decidable theory T , while an SMT instance is a formula in first-order
logic where some function and predicate symbols have additional interpretations. If we
consider a first-order formula φ in a decidable background theory T , the satisfiability
problem consists in deciding whether a model—i.e., an assignment to the free variables
in φ—that satisfies φ exists. It should be clear that SMT extends the Boolean satisfiabil-
ity problem (SAT) by adding background theories such as the theories of real numbers,
integers, and data structures. As an example, a formula may contain clauses such as
(x + 2 ≤ y) ∨ (x > y + z) ∨ p ∨ q, where x, y, and z are integer variables and p and q are
Boolean variables. The predicates involving non-Boolean variables, such as linear inequali-
ties, must be evaluated according to the rules of a corresponding background theory. Some
examples of theories of practical interest are the quantifier-free linear integer arithmetic
(QF_LIA), where atoms are linear inequalities over integer variables; the quantifier-free
non-linear integer arithmetic (QF_NIA), where atoms are polynomial inequalities over
integer variables; and the quantifier-free linear real arithmetic (QF_LRA), which is similar
to QF_LIA but with real variables.

The satisfiability modulo theories library (SMT-LIB) is a collection of benchmarks and
tools designed to support research and development in the area of satisfiability modulo the-
ories. It consists of a set of standardized benchmarks, written in the SMT-LIB language [31],
which can be used to evaluate the performance of SMT solvers on various logical formulas
with constraints that belong to different theories, such as arithmetic, bit-vectors, arrays, and
sets. The SMT-LIB language is a standardized language used for describing logical formulas
in the context of satisfiability modulo theories. It is an open and extensible language
designed to support a variety of theories and solvers. The language consists of a set of
syntactic and semantic rules for specifying logical formulas in various theories.

Current state-of-the-art SMT solvers leverage the integration of an SAT solver and
a T -solver, i.e., a decision procedure for the given theory T . To decide the satisfiability
of an input formula φ, the SAT solver enumerates the truth assignments to the Boolean
abstraction of φ, while the T solver is invoked only when the SAT solver finds a satisfying
assignment for the Boolean abstraction to check whether the current Boolean assignment
is consistent in the theory. If the assignment is also satisfiable with respect to the theory,
then a solution (model) is found for the input formula φ. Otherwise, the T -solver returns
an explanation for the conflict that identifies a reason for the unsatisfiability. Such an
explanation is learned by the SAT solver so that it may prune the search tree until either a
theory-consistent Boolean assignment is found or no more assignments exist.

For a comprehensive background on SMT, we refer to [32,33].
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2.3. Verification

As mentioned in Section 1, the aim of formal verification is to provide formal guar-
antees about the compliance of a neural network with some specific property of interest.
In particular, we focus on input–output specifications: that is, properties defining specific
preconditions on the inputs of the neural network and corresponding postconditions that its
outputs should respect.

Definition 1. Given a neural network ν : I → O, a generic input x ∈ I , and the corresponding
output y ∈ O, we can define an input–output property Φ as a couple Φ = 〈φI(x), φO(y)〉, where
the precondition φI(x) and the postcondition φO(y) are first order logic (FOL) formulas, with x
and y occurring as free variables.

Given this definition, the problem of proving that a network ν : I → O is compliant
with a property Φ = 〈φI(x), φO(y)〉 consists in proving the validity of the following
formula:

∀x.∀y.(φI(x) ∧ y = ν(x)) =⇒ φO(y). (6)

If the formula is valid, then the property is verified for all possible x; otherwise, at
least a counter-example x̂ exists, for which the formula is violated .

It should be clear that verifying a set of properties P consists of separately verifying
each property Φ ∈ P : if Equation (6) is valid for every property Φ, then ν is compliant with
the set of property P ; otherwise, some property Φ ∈ P will admit a counter-example, and,
as consequence, ν will not be compliant with P .

3. Materials and Methods

The last work [33] providing a comparison regarding the performances of SMT solvers
when applied to the task of verifying neural networks dates back more than 10 years. We
believe that the innovations introduced since then justify the need for the new experimental
evaluation we propose in this paper. In particular, our aim is to understand how the
current state-of-the-art SMT solvers perform when tasked with verifying neural networks
presenting non-linear activation functions. Unlike [34,35], we are not interested in using
optimized encoding or enhanced T -solvers since we intend to evaluate the performance of
the off-the-shelf solvers.

For our experimental evaluation, we focus on verifying the robustness of the network
to the local perturbation of its input: that is, small variations applied on the input vector that
may cause disproportionate changes in its output. This kind of property is similar to the
robustness to adversarial perturbation [28], a well-known reliability issue of classification
networks.

The formal definition of our safety property of interest for a given input vector x̂ with
corresponding output ŷ is:

∀x.∀y.(‖x− x̂‖∞ ≤ ε ∧ y = ν(x)) =⇒ ‖y− ŷ‖∞ < δ (7)

where ε and δ are, respectively, the maximum magnitude of the perturbation and the maxi-
mum acceptable magnitude of the variance on the corresponding output. ‖x(y)− x̂(ŷ)‖∞
is the Chebyshev norm of the difference between the original feature vector (output) and
the perturbed one. A less formal interpretation of this property is that whichever input
vector whose Chebyshev distance from the original one is less than a constant value ε
when given to the neural network ν produces an output whose Chebyshev distance from
the original one is bounded by a constant value δ. Due to the universal quantification,
proving that Equation (7) holds is unfeasible for most solvers. As consequence, we define
the following unsafety property:

∃x.∃y.(‖x− x̂‖∞ ≤ ε ∧ y = ν(x)) =⇒ ‖y− ŷ‖∞ ≥ δ (8)
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It should be clear that if the unsafety property of Equation (8) is valid then its model is
a counter-example for the safety property of Equation (7), which is thus violated. Again,
a less formal interpretation of our unsafety property is that at least an input vector exists
whose Chebyshev distance from the original one is less than a constant value ε and whose
corresponding output presents Chebyshev distance greater than δ from the correct one.

Because the SMT-LIB format is the recognised standard for the representation of SMT
properties, we need to encode both the property of interest and the relevant network in
such format. In the following, we present some small examples of our encoding to better
clarify it.

In Listing 1, we show our encoding for the ReLU, logistic, and hyperbolic tangent
activation functions. As the solvers do not have a native representation for the functions of
interest, we need to provide their definitions in terms of if-then-else (for the ReLU) and
exponential (for the logistic and hyperbolic tangent).

Listing 1. SMT-LIB code for the definition of the activation functions of interest.

; ; −−− RELU DEFINITION −−−
( define −fun max ( ( x Real ) ( y Real ) )
Real ( i t e ( < x y ) y x ) )

; ; −−− LOGI DEFINITION −−−
( define −fun sigmoid ( ( x Real ) )
Real (/ 1 (+ ( exp ( − x ) ) 1 ) ) )

; ; −−− TANH DEFINITION −−−
( define −fun tanh ( ( x Real ) )
Real (/ ( − ( exp x ) ( exp ( − x ) ) )
(+ ( exp x ) ( exp ( − x ) ) ) ) )

In Listing 2, we show the declarations of the input and output variables of our network:
the solvers need these declarations to identify the relevant variables of the query.

Listing 2. SMT-LIB code for the declaration of the classifier input and output variables.

; ; −−− INPUT VARIABLES −−−
( declare −fun X_0 ( ) Real )
( declare −fun X_1 ( ) Real )
. . .
( declare −fun X_8 ( ) Real )

; ; −−− OUTPUT VARIABLES −−−
( declare −fun Y_0 ( ) Real )
( declare −fun Y_1 ( ) Real )
( declare −fun Y_2 ( ) Real )

Finally, Listing 3 contains the encoding of the pre-conditions and post-conditions of
the property of interest: in particular, the example shown presents ε = 0.1 and δ = 0.1. As
can be seen, the property encoded is the unsafe one: the post-conditions are such that at
least one output variable exceeds the maximum allowed variation. The SMT-LIB encoding
of the neural network is not shown because of its size: for each output variable Y_i, the
computations carried out in each layer must be encoded in order to express the output
variables in terms of the input variables. While such a process is not excessively complex
to automate, it would be quite cumbersome to report explicitly. For more details regarding
this, we refer to our code.
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Listing 3. SMT-LIB code for the definition of the precondition on the input and post-condition on the
output.

; ; −−− INPUT CONSTRAINTS −−−
( a s s e r t (>= X_0 0 . 0 1 ) )
( a s s e r t (<= X_0 0 . 2 1 ) )
. . .
( a s s e r t (<= X_8 0 . 1 ) )

; ; −−− OUTPUT CONSTRAINTS −−−
( a s s e r t ( or
(<= Y_0 0 . 1 0 )
(>= Y_0 0 . 3 0 )
. . .
(<= Y_2 0 . 4 0 )
(>= Y_2 0 . 7 0 ) ) )

4. Experimental Evaluation
4.1. Setup

For our experimental evaluation, we built a set of benchmarks based on different
network architectures and properties of interest to test the performances of four different
SMT solvers. The dataset used to train the networks of interest belongs to the same domain
of application of the IMOCO4.E elevator case study presented in Section 3 . Similarly, the
network architectures considered are analogous to the ones that are being evaluated in
the scope of the same case studies. Finally, the SMT solvers were chosen both on the basis
of the results of the international SMT competition (SMT-COMP 2022) and their ability to
support the activation functions of interest.

In the following, we provide more details on our experimental setup regarding both the
generation of the benchmarks and the solvers considered. The code needed to generate our
benchmarks can be found at https://github.com/darioguidotti/imoco4e-NTA (accessed
on 5 July 2023), whereas the SMT solvers are available on the respective websites.

4.1.1. Dataset

We chose the Electric Motor Temperature dataset for our experimental evaluation: this
dataset consists of 185 h of sensor recordings from a permanent magnet synchronous motor
(PMSM) deployed on a test bench. All of the recordings are sampled at 2 Hz. The dataset
consists of multiple measurement sessions, which can be distinguished from each other by
feature “profile_id”. A measurement session can be between one and six hours long. The
other features of the dataset are the following:

• u_d: Voltage d-component measurement in dq-coordinates, expressed in volts (V);
• u_q: Voltage q-component measurement in dq-coordinates (V);
• i_d: Current d-component measurement in dq-coordinates, expressed in amperes (A);
• i_q: Current q-component measurement in dq-coordinates (A);
• coolant: Coolant temperature, expressed in Celsius (°C);
• ambient: Ambient temperature (°C);
• motor_speed: Motor speed, expressed in rotations per minute (rpms);
• pm: Permanent magnet temperature (°C), measured with thermocouples;
• stator_winding: Stator winding temperature (°C), measured with thermocouples;
• stator_tooth: Stator tooth temperature (°C), measured with thermocouples;
• stator_yoke: Stator yoke temperature (°C), measured with thermocouples;
• torque: Motor torque, expressed in Newton-meter.

https://github.com/darioguidotti/imoco4e-NTA
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In our case study, the task is to determine stator_tooth, stator_yoke, and torque given
the remaining features. For more details on the meaning of each feature, we refer to [36,37]
and the Kaggle page of the dataset (https://www.kaggle.com/datasets/wkirgsn/electric-
motor-temperature (accessed on 5 July 2023)). All data were normalized between 0 and 1
or −1 and 1 depending on the activation function used in the network of interest.

4.1.2. Network Architectures

Given the case study of interest, we choose to focus on fully connected neural networks
with non-linear activation functions as they have been successfully applied in regression
tasks in many different domains. In particular, our architectures consist of one or more
blocks composed of a fully connected layer and an activation function layer followed by a
fully connected output layer without an activation function. We refer to the layers of the
above-mentioned blocks as intermediate layers. All of the fully connected layers do not
have biases, and the size of the output layer is always equal to three, which is the number
of quantities we wish to predict. The size and the number of the intermediate layers are
reported in Table 1 together with the chosen activation functions, and the mean square
error reached on the test set. Given the scope of this work, we do not comment further on
this last measurement except to underline that the performances obtained by the networks
are reasonable given the task of interest.

Table 1. Relevant data for the verification benchmarks. The column Architecture reports the number
of neurons for each intermediate fully connected layer of the network; the column MSE reports the
mean square error computed on the test set; the columns Epsilon and Delta report, respectively, the
ε and the δ chosen for the property considered in the benchmark; and the column Benchmark ID
represents the identifier assigned to the corresponding benchmark. The subcolumns ReLU, Logi, and
Tanh indicate that the reported values are related to the network architecture using the corresponding
activation functions.

Architecture
MSE

Epsilon Delta
Benchmark ID

ReLU Logi Tanh ReLU Logi Tanh

[16] 2.607× 10−4 9.930× 10−4 9.508× 10−4

0.001
0.1 B_000 B_030 B_060

1 B_001 B_031 B_061

0.01
0.1 B_002 B_032 B_062

1 B_003 B_033 B_063

0.1
0.1 B_004 B_034 B_064

1 B_005 B_035 B_065

[32] 2.387× 10−4 9.124× 10−4 8.092× 10−4

0.001
0.1 B_006 B_036 B_066

1 B_007 B_037 B_067

0.01
0.1 B_008 B_038 B_068

1 B_009 B_039 B_069

0.1
0.1 B_010 B_040 B_070

1 B_011 B_041 B_071

[16-8] 3.006× 10−4 3.267× 10−4 9.514× 10−4

0.001
0.1 B_012 B_042 B_072

1 B_013 B_043 B_073

0.01
0.1 B_014 B_044 B_074

1 B_015 B_045 B_075

0.1
0.1 B_016 B_046 B_076

1 B_017 B_047 B_077

https://www.kaggle.com/datasets/wkirgsn/electric-motor-temperature
https://www.kaggle.com/datasets/wkirgsn/electric-motor-temperature
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Table 1. Cont.

Architecture
MSE

Epsilon Delta
Benchmark ID

ReLU Logi Tanh ReLU Logi Tanh

[32-16] 2.340× 10−4 9.894× 10−4 7.628× 10−4

0.001
0.1 B_018 B_048 B_078

1 B_019 B_049 B_079

0.01
0.1 B_020 B_050 B_080

1 B_021 B_051 B_081

0.1
0.1 B_022 B_052 B_082

1 B_023 B_053 B_083

[64] 2.071× 10−4 3.208× 10−4 8.134× 10−4

0.001
0.1 B_024 B_054 B_084

1 B_025 B_055 B_085

0.01
0.1 B_026 B_056 B_086

1 B_027 B_057 B_087

0.1
0.1 B_028 B_058 B_088

1 B_029 B_059 B_089

4.1.3. Training Parameters

To train the networks, we used PYNEVER [16], a tool for the training, conversion, and
verification of neural networks that leverages PYTORCH as training backend. In our training
process, we use 20% of the dataset as a test set, and of the remaining data 30% is used as a
validation set. The loss function is the mean square error, and we train each network for
5 epochs. The batch sizes for the training, validation, and test sets are, respectively, 1024,
512, and 1024. The optimizer used is the Adam optimizer with its default parameters,
and the metric used in our testing is again the mean square error. For more details on the
learning parameters, we refer again to the PYTORCH documentation.

4.1.4. Solvers

As mentioned at the beginning of this Section, we referred to the results of SMT-COMP
2022 to guide the selection of the SMT solvers to consider in our experimental evaluation.
Moreover, we favored the solvers that allowed for the use of transcendental functions as
activation functions for our networks (i.e., the logistic and hyperbolic tangent functions).
Our final choices were CVC5 [38], MATHSAT [39], Z3 [40], and YICES2 [41]: the first two
support both piece-wise linear and transcendental functions, whereas the others support
only piece-wise linear ones. As a consequence, it was possible to only test the benchmarks
on all four solvers from B_000 to B_029 : the remaining ones were only tested on CVC5
and MATHSAT.

All the experiments were executed on a Dell PowerEdge T640 workstation with
256 GB of RAM and a 3.60 GHz (16 Cores) Intel Xeon Gold CPU. The operating system
was Ubuntu 22.04.1 LTS. The verification queries were always launched with the default
solver’s parameters and were defined using the encoding presented in Section 3.

4.2. Results

In Table 2, the results of our experimental evaluation can be seen. Column Benchmark
ID identifies the benchmark tested, whereas column Times reports the time needed, in
seconds, to solve the benchmarks by the solvers of subcolumns MathSAT, CVC5, Z3, and
Yices2. Finally, column Results reports the response of the solvers regarding the query of
interest. The symbol “-” means that the time limit of one hour was reached while trying
to solve the query, whereas “N.S.” indicates that the solver did not support the activation
functions used in the query.
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Table 2. Experimental results obtained by testing our benchmarks on the SMT solvers of interest.

Benchmark ID
Times Results

MathSAT CVC5 Z3 Yices2 MathSAT CVC5 Z3 Yices2

B_000 0.037 0.156 0.057 0.027 sat sat sat sat

B_001 0.035 0.317 0.077 0.310 unsat unsat unsat unsat

B_002 0.035 0.126 0.042 0.024 sat sat sat sat

B_003 0.027 0.346 0.074 0.201 unsat unsat unsat unsat

B_004 1.277 0.377 0.043 0.024 sat sat sat sat

B_005 4.629 7.589 - 7.648 unsat unsat - unsat

B_006 0.049 0.160 0.057 0.030 sat sat sat sat

B_007 0.045 0.939 0.143 0.264 unsat unsat unsat unsat

B_008 0.105 0.164 0.061 0.033 sat sat sat sat

B_009 0.545 1.286 0.181 0.313 unsat unsat unsat unsat

B_010 25.164 1.014 0.052 0.032 sat sat sat sat

B_011 182.658 254.133 - - unsat unsat - -

B_012 0.062 0.732 0.096 0.038 sat sat sat sat

B_013 0.055 0.977 0.159 0.844 unsat unsat unsat unsat

B_014 0.058 0.656 0.068 0.037 sat sat sat sat

B_015 0.058 0.978 0.151 0.194 unsat unsat unsat unsat

B_016 1.700 3.216 0.061 0.028 sat sat sat sat

B_017 5.084 5.307 1.084 4.705 unsat unsat unsat unsat

B_018 0.174 4.190 0.178 0.078 sat sat sat sat

B_019 0.177 12.235 0.549 541.365 unsat unsat unsat unsat

B_020 8.151 5.342 0.175 0.078 sat sat sat sat

B_021 19.972 31.095 1.506 - unsat unsat unsat -

B_022 52.468 18.573 0.171 0.080 sat sat sat sat

B_023 - - - - - - - -

B_024 0.078 1.585 0.089 0.043 sat sat sat sat

B_025 0.072 2.431 0.381 0.376 unsat unsat unsat unsat

B_026 0.865 1.412 0.086 0.042 sat sat sat sat

B_027 8.368 9.306 1.319 0.850 unsat unsat unsat unsat

B_028 535.558 2.700 0.090 0.042 sat sat sat sat

B_029 2890.789 2922.805 - - unsat unsat - -

B_031 2.351 - N.S. N.S. unsat - N.S. N.S.

B_033 1.948 - N.S. N.S. unsat - N.S. N.S.

B_035 6.128 - N.S. N.S. unsat - N.S. N.S.

B_037 1474.801 - N.S. N.S. unsat - N.S. N.S.

B_043 209.425 - N.S. N.S. unsat - N.S. N.S.

B_045 53.913 - N.S. N.S. unsat - N.S. N.S.

B_047 796.081 - N.S. N.S. unsat - N.S. N.S.

We do not report all the results for the benchmarks from B_030 to B_089 in the tables
because Z3 and YICES2 do not support the transcendent activation function and CVC5
was unable to solve any benchmark before the timeout. As a consequence, we only report
the results for the benchmark that were solved by at least MATHSAT.

From Tables 1 and 2, it appears clear that the “size” of the input variable space,
controlled by ε and δ, is an important discriminating factor for the success of the verification
process: indeed, all the queries presenting higher values of ε and δ were, in general, much
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harder to verify for all the solvers and in some cases were impossible to verify before
the timeout.

As expected, the number of layers and neurons in the network appears to be another
important factor. However, it is not clear if one is more important than the other: B_023
(32 + 16 neurons) causes all solvers to timeout, whereas B_029 (64 neurons) is successfully
verified by MATHSAT and CVC5; conversely, if we consider B_11 (32 neurons) and B_17
(16 + 8 neurons), the first appears harder to verify than the second. In general, while the
size of the network architecture is clearly critical for the verification tasks, our experiments
did not find a clear indication regarding whether the number of neurons or the number of
layers is more relevant.

Lastly, it appears that the complexity introduced by transcendent activation functions
is still too high for the capabilities of the majority of existing solvers: indeed, only in the
case of the smallest network architectures (a single layer of 16 neurons and two layers of
16 and 8 neurons, respectively), MATHSAT is consistently able to solve the query before
the timeout.

Regarding the performances of the different solvers, MATHSAT managed to success-
fully solve the greatest number of benchmarks, followed by CVC5, Z3, and YICES2. From
Figure 2, it is possible to notice that, while MATHSAT and CVC5 managed to solve the
greatest number of queries, both Z3 and YICES2 often need less time than the other solver
to reach the results on the queries they are able to solve before the timeout. Overall, it seems
that CVC5 and MATHSAT are the best suited for the task of verification of neural networks.
While this result is not particularly surprising for the case of CVC5, as the winner of the
QF_NRA division in the Single Query Track of SMT-COMP 2022, MATHSAT behaved better
than expected given its modest positioning in the same competition.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
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Figure 2. Logarithmic representation of the times needed to solve the benchmarks (shown on the
x-axis) by the solvers.

5. Related Works

In the last few years, many different methodologies and tools tackling the verification
of neural networks have been developed, as testified to in [9,22,42,43]. For the sake of
clarity, first we briefly explain the difference between complete and incomplete verification
methodologies; then, we provide a more detailed overview of the existing methodologies
following the categorization proposed in [42], in which they are classified based on the
kind of guarantee they can provide.

Incomplete verification methodologies [14–16,44,45] are typically based on technolo-
gies such as abstract interpretation and bound propagation. As a consequence, their
answers regarding the validity of a property of interest are usually subject to a certain
degree of uncertainty. This problem originates from the use of over-approximations of
the original network ν in the verification methodology, which, as consequence, may be
unable to distinguish between the presence of a spurious counter-example, caused by the
coarseness of the approximation, and a concrete one. However, it should be noted that the
use of over-approximations, while potentially causing the above-mentioned issue, allows
for the successful verification of networks of significant complexity. Conversely, complete
verification methodologies [10,17,19,46,47] traditionally leverage techniques such as mixed
integer linear programming (MILP), branch and bound, and satisfiability modulo theories
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to provide a conclusive answer regarding the validity of the property of interest, at the
price of greatly increased computational complexity.

As mentioned before, another important categorization for verification methodology
is the one based on the kind of guarantees they are able to provide: here, we focus on
deterministic, one-sided, and converging guarantees. Methodologies providing determinis-
tic guarantees, which state exactly whether a property is valid, typically transform the
verification problem into a set of constraints that are then solved by a suitable solver. As
an example, the methodologies presented in [10,34,48] leverage SMT solvers, whereas
in [17,19,46] mixed integer linear programming (MILP) solvers are used. However, the
most recent methodologies often enhance such solvers with other techniques such as
branch-and-bound (BnB) and symbolic bound propagation. One-sided guarantees can serve
as a sufficient condition for a property to hold by providing either a lower or an upper
bound to a variable. Typically, the approaches offering this kind of guarantee present better
scalability than the previously presented ones and are more resilient to issues of numerical
instability that may arise due to the intrinsic limitation of the accuracy of floating-point
arithmetic. Such methodologies leverage technologies such as linear approximation [45,49],
convex optimization [50], abstract interpretation [14–16], and interval analysis [8]. Lastly,
the approaches providing guarantees with converging lower and upper bounds also achieve
good scalability by leveraging technologies such as global optimization [51,52], layer-by-
layer refinement and analysis [53] and reduction to a two-player turn-based game [54,55].
In Table 3, we provide a summary of the current approaches; for a more extensive survey,
we refer to [42].

While both the categorizations presented are still widely used, many new verification
tools combine complete and incomplete algorithms to achieve a better trade-off between
computational complexity and accuracy. Furthermore, they often provide various kinds of
guarantees. As a consequence, our categorization may present some small inaccuracies:
for example, the two methodologies of [15,16], which are classified as incomplete, may be
complete under certain conditions and modes of operation. Moreover, while their main
technology is abstract interpretation, some of their internal algorithms make use also of
linear programming.

Concerning the usage of SMT technologies in the verification of neural networks,
the first paper [48] presenting a verification methodology leveraging SMT dates back to
2010: in particular, the tool NEVER used in combination with the HYSAT [56] solver and
abstract interpretation to verify a small fully connected neural network with a single layer
(with three hidden neurons) of sigmoid activation functions. Then, in 2012, the same
authors proposed an enhancement of their algorithm and compared its performances with
a portfolio of SMT solvers using a set of benchmarks considering various properties and
network architectures of interest. After the discovery of adversarial perturbation in 2013
by [28], a novel methodology leveraging both linear programming and SMT technologies
was proposed [34] in 2017. This verification algorithm used a particular encoding of the
network and property of interest to enhance the performances of the solvers, making it
possible to verify multi-layer fully connected NNs with ReLU activation functions. Lastly,
still in 2017, a methodology leveraging a novel T -solver, optimized for managing ReLU
activation functions, was proposed in [35]. The algorithm was tested successfully on the
ACAS XU benchmark, which consists of a set of networks and related properties from the
aviation domain.
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Table 3. Summary of different contributions for verification of neural networks in the scientific
literature. The column Guarantees represents the kind of guarantees provided by the verification
methodologies. Technology represents the main technology leveraged by the methodologies, whereas
Methodology represents the corresponding papers. Finally, Completeness indicates if the related
methodology is complete (X) or incomplete (×).

Guarantees Technology Methodology Completeness

Deterministic

SMT

Katz et al. [10] X

Pulina and Tacchella [48] ×
Ehlers [34] X

MILP

Henriksen and Lomuscio [17] X

Henriksen and Lomuscio [19] X

Bunel et al. [46] X

One sided

Abstract Interpretation

Guidotti et al. [16] ×
Singh et al. [14] ×
Tran et al. [15] ×

Convex Optimization Wong and Kolter [50] ×
Interval Analysis Wang et al. [8] ×

Linear Approximation Zhang et al. [45] ×
Weng et al. [49] ×

Converging

Layer-by-Layer Refinement Huang et al. [53] X

Two-Player Game
Wu et al. [54] ×
Wicker et al. [55] ×

Global Optimization
Ruan et al. [51] ×
Ruan et al. [52] ×

6. Conclusions

In this paper, we conducted an experimental evaluation of several state-of-the-art SMT
solvers. Our evaluation utilized a set of benchmarks consisting of various neural network
architectures, non-linear activation functions, and different properties of interest. The
neural networks were trained on real sensor data obtained from an electric motor, resulting
in realistic accuracy levels. The properties of interest focused on local robustness and
included varying maximum magnitudes for perturbations and tolerable output deviations.

Our findings indicate that, currently, even the solvers that support transcendent
functions struggle to reliably verify networks with such activation functions. Specifically,
among the solvers we evaluated, only MATHSAT was able to complete the analysis for
a few benchmarks with logistic activation functions before reaching the timeout limit.
However, when we considered piece-wise linear ReLU activation functions, the solvers
performed better. In the worst-case scenario, at least 26 out of 30 benchmarks were solved
correctly, with the best solver successfully solving 29 benchmarks. Based on our evaluation,
we conclude that MATHSAT and CVC5 are the most suitable solvers for the verification of
neural networks.

In our future endeavors, as future work, we intend to extend our experimental eval-
uation by including additional case studies derived from the IMOCO4.E project. This
extension will enable us to investigate a broader spectrum of network architectures and
their suitability for various domains. Moreover, we are actively engaged in ongoing
research to enhance existing verification methodologies that rely on abstract interpretation.
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